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Abstract

The behaviour of a composite material under external loads is often quite different from

that of an isotropic material. Modeling of damage in such materials is a complex problem

because of the existence of several failure mechanisms at various length scales, e.g., fiber

breakage, fiber-matrix debond, matrix cracks and delaminations. This poses a need for

understanding the damage mechanics thoroughly at various length scales. Hence, it is

impossible to create a generalized damage model by simply observing the macro-level be-

haviour of the composite laminate. So, the analysis of composites needs to be a multi-scale

one, where, the effective field variables at each scale are obtained from the homogenization

of the field variables defined at a lower scale.

Several damage models have been proposed in literature for characterization of the

influence of damage modes by matrix cracks. One such generalized continuum damage

model1 is studied in the present work for transverse(normal) matrix cracks. The above

model had obtained the micro level stress concentration regions which were the potential

trigger points for the matrix cracks. In the present study, two independent, orthogonal,

normal matrix cracks are introduced, in order to better simulate the actual physics of

matrix cracking. The present matrix crack model will be compared with that proposed1.

The comparison will be done for both the material degradation model and the damage

evolution models. The effect of size and mode of damage on the effective properties is

also studied and definitive conclusions are drawn. The dependency of these effects on the

volume fraction is also studied.

1V. Murari, "Micromechanics Based Continuum Damage Model for Ply Failure in Unidirectional Com-
posites", PhD Thesis, 2010
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Chapter 1

Introduction

1.1 Introduction

The use of composite materials in cyclic load carrying structural members has raised ques-

tions of their durability. Recent investigations into the fatigue and fracture of composites

has attracted considerable interest due to the increasing use of these materials in aerospace

structures. These materials exhibit complex modes of failure both under static and fatigue

loadings.

Composites are intrinsically different from metals and require a different approach to

damage analysis. The key differences between metals and fiber-reinforced composites drive

physically different load responses. Composites have multiple constituents with unique

material properties contributing separately to the load response, so the composite stress

and the constituent stress are not the same. This is where the role of multiple scales

becomes important. Composite behaviour is directionally dependent as it is influenced by

the orientation of the fibers and surrounding laminae. Most of the damage in composites

is accumulated as microcracks in the matrix material.



1.1 Introduction 2

This results in characteristically different responses to cyclic loading. Failure is ac-

companied by one or more of the following phenomena: fiber breakage (figure 1.1(a));

fiber-matrix debond (figure 1.1(b)); matrix cracking (figure 1.1(c)) and delaminations (fig-

ure 1.1(d)) and (figure 1.1(e)). These phenomena must be taken into consideration in

predicting failure of the laminates. This fundamental difference in material response re-

quires a different approach to be used for the analysis of composite damage.

Damage in composites is different from that in metals. Metal failure is characterised

by slow crack propagation; cracks initiate and propagate in a series of notch blunting and

crack propagation events. By contrast, composite failure (figure (1.2)) is a progressive

accumulation of damage , including multiple damage modes and complex failure mecha-

nisms.

Prediction of micro-mechanical failure modes necessiates consideration at even smaller

scale as failure of a structure is generally initiated at the locations where stress concentra-

tion is high. The current study focuses on matrix cracks (figure 1.3) in unidirectional fiber

composite laminates with thermosetting matrix. The length scale of the constituents of

the lamina is much smaller than the length scale of the lamina. Therefore, a representative

volume element (RVE) is used, for the analysis purpose, with the assumption that the

lamina can be formed by using the RVE as the basic building block. Three length scales

(figure 1.4) that can be defined in the composites are: 1) Macroscale (length scale of the

laminate); 2) Mesoscale (length scale of the lamina); and 3) Microscale (length scale of the

RVE).

The responses of a composite at macroscale is the manifestation of the responses

at the mesoscale, which in turn is the manifestation of what happens at the microscale

[5]-[8]. Further, composites are increasingly used in advanced light-weight structures, es-

pecially modern aircraft structures that are mostly subjected to cyclic loads. These can

lead to progressive growth and interaction of several damage mechanisms that occur at

different scales, till the failure of the component. Hence, there is a need to understand the
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(a) Fiber breakage [14]

(b) Fiber-matrix debond [13] (c) Matrix cracks [15]

(d) Delamination [14] (e) Transverse matrix cracks with delamination [12]

Figure 1.1: Commonly observed damage modes
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Figure 1.2: Progressive Failure [13]

mechanisms at different scales to develop meaningful damage models.

Further, analysis of composite requires a multiscale analysis with appropriately es-

tablished connections between different scales. The process of obtaining the fields at a

higher scale, based on the fields at the lower scale is termed as homogenization [9] and the

process of obtaining the fields at a lower scale, from the fields at the higher scale is termed

as localisation.
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Figure 1.3: Matrix cracks considered in the present study

1.2 Damage Models

The study of initiation and accumulation of damage up to and including rupture is called

Damage Mechanics [16]. Several growth models have been proposed in the literature,

starting from the first ply failure theory, progressive ply failure theory, and others (for

example the world wide failure exercise [19]). A major problem with these models is that

they could predict either the initiation of damage or provide a crude global model for ply-

wise damage. These models could not predict the point-wise distribution of damage or its

evolution. A major problem with the existing damage mechanics based models is that the

stiffness properties become zero as the damage reaches its critical value (di = 1). This leads

to a material singularity at a point, where the stiffness values become zero. Thus a cut-off

damage value is often employed in the evolution model to prevent the stiffness values from

becoming zero. To properly estimate the amount of damage or damage accumulation,

it is necessary to formulate the damage phenomenon in terms of measurable mechanical

variables.
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Figure 1.4: Length scales used to study composite material response

1.2.1 Damage Meso-model for Laminates (DML)

As a prelude to the existing model, a damage model proposed by Ladeveze[17] is studied,

that has its foundations in irreversible thermodynamics, named Damage Meso −model

for Laminates (DML). This model is an example for meso-macro approach. A bridge

between the micro and meso level is presented in [20]. However, the link between the

micro-meso is not clear. This meso-model is based on the hypothesis that the behavior of

any laminate can be described using elementary entities called meso constituents. These

are the ply and the interfacial layers that lie in between two plies (or laminae). It is

assumed that the response of the laminate (of any stacking sequence), subjected to any

loading, can be obtained once the behavior of the meso constituents is identified. The
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response of a damaged layer at any instant of time (or loading conditions) is expressed in

terms of degradation in the stiffness properties and the build-up of inelastic strains due

to damage and/or matrix plasticity. This theory has been shown to be both accurate and

versatile for application to a wide variety of fibrous composite laminates. The damage

model uses three damage variables, one for fiber breakage and other two are matrix modes

representing fibre-matrix debonding and transverse matrix cracking. The damage evolution

law is based on the experimental observations of the response of a damaged layer.

1.2.2 Micromechanics Based Continuum Damage Model [4] for Ply Fail-

ure in Unidirectional Composites

In light of the above discussion, the studied model [4] focuses on developing a detailed

micromechanical analysis at the level of the constituents (fiber and matrix) in order to

understand the local state of stresses and strains. Damage mechanisms are identified based

on these stresses (and strains) and the damage parameters are characterized in terms of

damage sizes of these damage mechanisms at the micro level. Based on the literature

and available experimental evidence, the micro-level damage mechanisms identified are:

1) Fiber breakage, 2) fiber-matrix debond, and 3) matrix cracks. The micromechanical

analysis is done, using the mathematical theory of homogenisation, on a representative

volume element (RVE) with and without damage.

The study also systematically brings in the effects of volume fraction, which is nor-

mally ignored in the study of damage in the literature. Further, the study focuses on

implementing a simple model for residual stresses developed due to cure process. The

model is based on cooling down of completely cured composites from cure temperature to

room temperature. The model assumes that the curing is complete before cooling down

process and there is no change in the elastic properties during the cooling down process.

Based on the study of residual stresses, a detailed model is developed for the degradation
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of the coefficient of thermal expansion in terms of damage. This brings out a very impor-

tant feature which is often missed in the damage modeling - that of the additional residual

strains being generated due to damage (which can be linked to the thermal cure induced

strains).

Using arguments from continuum thermodynamics and necessary consistency condi-

tion on the dissipation of energy, a simplified model for evolution of damage is developed

in this study. This forms the framework for obtaining the evolution equation for the dam-

age variables. The evolution model is defined in terms of the macro-stresses, but is based

on the micromechanical observations and thought experiments. The parameters in the

evolution model are obtained from the available data from experiments conducted on the

selected composite laminates. The damage initiation criteria is also defined in terms of

macrostresses, but is based on stress concentration factors in the critical regions, identified

from the micromechanical analysis.

The restriction imposed by the second law of thermodynamics is given by equation (1.2.1),

which is repeated here for the sake of completeness.

Aiḋi + σij ė
R
ij ≥ 0 (1.2.1)

Note that, Ai can be understood as the energy release rate associated with the

assumed damage mode. Hence, the first term in equation (1.2.1) leads to dissipation of

energy due to growth of the damage. So, by definition Ai is positive by itself. Therefore,

the term, Ai di, is used for modeling damage evolution with this understanding. The

second part of equation (1.2.1) will be due to two factors: 1) Matrix plasticity, ėij . 2)

Effect of damage on initial state of stress, ėd,Rij . Since this is a micromechanical analysis,

it is attempted to create a simple model to understand the cause for this plastic behavior

at macro level. It will be shown that this is due to the characteristics of the matrix, which

is modeled through a simplified elastic-perfectly plastic model. Thus, the second part of
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equation (1.2.1) will be modeled through a simplified model of a hardening material at the

macroscopic level and is presented in the subsequent chapter. The only restriction on the

evolution model is found out to be

ḋi > 0 (1.2.2)

Based on the obtained condition (1.2.2) the following evolution laws were obtained:

Fiber breakage: Despite the fact that the fiber breakage is an instantaneous event , a

smooth evolution model was proposed as follows.

d1 = 0; when, σ11 ≤ Λσf11 (1.2.3)

d1 = max
τ≤t

σ11 − Λσf11

(1− Λ)σf11

; when, σ11 ≥ Λσf11 (1.2.4)

where τ denotes any time (or load step) previous to the current time (or load step) t; σf11

is the failure stress for the fiber; Λ is chosen such that the damage initiates very close to

the failure stress. Here, Λ is chosen as 0.8.

Fiber/matrix debond: The evolution model for the fiber-matrix debond is given as

d2 = 0; when, |σ12| ≤ |σc12| (1.2.5)

d2 = c1 max
τ≤t
〈|σ12| − |σc12|〉+ ; when, |σ12| ≥ |σc12| (1.2.6)

where σc12 is the critical stress at which the fiber-matrix debond initiates. Note that it is

assumed here that growth of d2 is independent of sign of σ12.

Matrix cracks: The evolution model for the matrix crack is given as

d3 = 0; when, σ22 ≤ σc22 (1.2.7)

d3 = c2 max
τ≤t
〈σ22 − σc22〉+ ; when, σ22 > σc22 (1.2.8)

where σc22 is the critical stress at which the matrix crack initiates and the 〈.〉 denotes the

positive part.
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1.3 The Concept of Homogenization

Composite materials generally comprise of a domain with locally periodic structure which

arises from the assembly of different heterogeneous media with different material behaviour.

The domain can be idealized to be formed of periodically repeating cells of the type shown

in (figure 1.5). Note that, however, , these periodically repeating cells are never intact at

the boundaries due to rough finishing of the composite fabric. To demonstrate the concept

of homogenization, let us consider the locally periodic domain Ω shown in (figure 1.5),

subjected to the traction vector Tj for j = 1,2,3 on the force boundary ΓN and subjected

to displacement boundary conditions on ΓD. Let ∂Ω = ΓN ∪ ΓD.

Figure 1.5: A hypothetical periodic domain

The complete domain Ω is built up of the repeating units called RVEs (represen-

tative volume elements). Each RVE comprises of a fiber part and a matrix which holds

together the fiber. Use of fiber embedded in surrounding matrix leads to discontinuity

in the material properties. The task of obtaining a numerical solution to this problem is
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computationally complex as the mesh has to be very fine over each RVE so as to capture

the full material detail. Now, this leads to a massive matrix problem which may be com-

putationally difficult to solve. In order to overcome such bottlenecks during computation

and get a good approximate solution to the problem, several averaging methods have been

proposed. Mathematical theory of homogenization [9] has been used as one of the primary

tools in recent past for analyzing the heterogeneous composite media. The theory says

that in periodic heterogeneous media like the composites, the solution can be broken down

into two components viz. the micro-level(oscillatory) part which is smeared and superim-

posed on a macro-level(smooth) part. In this method micro level problems are solved to

obtain the mechanics at the macro scale, the resulting equations are called homogenized

or averaged equations and the coefficients associated with them are called homogenized or

effective coefficients (figure 1.6).

Figure 1.6: RVE smeared out into equivalent homogeneous material
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1.4 Present Study

The existing damage model [4] developed had come up with certain regions of concentra-

tion zones (figure 1.7(a)) inside the RVE under external loading. These high stress level

zones are potential regions for the matrix cracks to initiate. Once the matrix cracks are

initiated the direction of their growth can be in either of the two directions shown (figure

1.7(b)). Note that the model of [4] assumes that the matrix cracks in both directions grow

symmetrically, starting from the fiber surface.

The present work is an attempt to study the matrix crack growth model which is on

the right side(II) of the figure 1.7(b). This will help one understand the nature of growth

law associated with this crack(II) and draw conclusions about whether the growth law is

governed by the direction of matrix crack growth or is only dependent on the size of the

matrix crack. In this study several numerical experiments are performed, based upon the

theory of homogenization for both undamaged and damaged cases, on 3-dimensional unit-

cell RVEs. The damaged RVEs are analyzed to develop the growth law. It is expected that

the proposed model for matrix crack location and growth is more realistic, as it emanates

from the region of stress concentration and leads to a directional dependence of stiffness

on the crack. In the current study only the matrix crack oriented along the local vetical is

considered, as in a laminate, the dominant stresses will be σ22 (and not σ33). The model

for matrix cracks considered in [4] is transversely isotropic, which is evident from the

symmetric cracks considered. The present model for matrix cracks considered is orthotrpic

in nature, but transverse isotropy is assumed for modelling purposes.

The unit-celled RVE is modeled and meshed using HyperMesh, a versatile meshing

tool, particularly for problems of this nature. One of the several models which were being

used for the computations is shown in (figure 1.8)
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(a) Stress concentration zones

(b) Matrix crack models

Figure 1.7: Concentration zones and matrix cracking models
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1.5 Outline of the thesis

The present work is outlined as follows:

1. The first chapter introduces the importance of micromechanics and briefly gives an

idea of the homogenization teory applied to periodic heterogeneous media.

2. In the next chapter a detailed formulation of the homogenization theory is presented

alongside the derivation of the weak formulation.

3. The third chapter deals with the macro influence of damage and parametric studies.

4. In the fourth chapter, model identification and model predictictions are presented.

5. The final chapter closes with the conclusions and suggestions for future study.
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Figure 1.8: A z-direction matrix crack model, meshed in HyperMesh v8.0SR1



Chapter 2

Mathematical Theory of

Homogenization

2.1 Introduction

In this chapter a mathematical tool is developed based on the mathematical theory of ho-

mogenisation [9]. This method is based on an asymptotic expansion over multiple scales

which ensures a consistent correlation between the micro-structure and macro level re-

sponses. The formulation is mainly focused on obtaining the effective elastic properties,

effective thermal and shrinkage properties and stress-strain concentration factors which

help compute the micro level stress-strain distribution in fiber and matrix due to various

mechanical and process induced loads.

Materials that posess microstructure can be modeled using partial differential equa-

tions with rapidly oscillating coefficients. Periodic micro level problems associated with

such materials are solved to get equations with slowly oscillating coefficients at the macro-

scopic scale the equations so obtained are called the homogenized or averaged equations

with their coefficients being termed as homogenized or effective coefficients.
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The arrangement of microstructure is assumed to be a periodically distributed square

array in a thermosetting matrix like epoxy. The unit celled RVE could be chosen as shown

(figure 1.5). Let the size of the unit cell be ε × ε × ε and ε << min(L, l) where L is the

length scale of the lamina and l is the characteristic size of the problem. For example,

l is a characteristic wavelength, if the problem under consideration is the study of wave

propagation.

The fast coordinate y is defined in such a way that, y = x
ε . This coordinate is called

the fast coordinate as it may be considered to vary faster, by the parameter 1
ε , than the

x coordinate, where x is called the slow coordinate [9]. In terms of these fast coordinates,

the size of the unit cell becomes 1 × 1 × 1. The fast coordinates correspond to the micro

scale and the slow coordinates corresponds to the macro scale. All the field variables are

assumed to vary on these multiple scales. The asymptotic homogenization method involves

the following steps:

1. The solution is assumed as an asymptotic expansion in terms of the parameter ε.

2. Different powers of ε are equated, a set of equations at successive orders ε are deduced.

3. The equations obtained above with different orders are solved successively to obtain

the homogeneous or averaged or macro-scale equations, effective coefficients and the

concentration factors. This requires solution of micro or cell level problem.

2.2 Formulation

Consider the region Ω containing the heterogeneous material with Γ1 and Γ2 as the dis-

placement and traction boundary conditions respectively. Let ekl, e
th
kl , e

sh
kl , u

ε
i = ui (x,y),

fi, ti, and ni be the total strain tensor, the strain tensor due to free thermal expansion,

the strain tensor due to free shrinkage, the displacement field, the external force field, the

surface force field and outer unit normal to the boundary of Ω, respectively. Due to the



2.2 Formulation 18

(a)

(b)

Figure 2.1: (a) Material with microstructure in macro scale(x1,x2,x3) showing character-
istic length(L) at macro scale and the characteristic length of the micro structure (ε). (b)
Unit-cell RVE for the microstructure in fast coordinates (y1,y2,y3)
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repetitive constituents, the components of the stiffness tensor, Cεijkl, the thermal expansion

coefficient matrix, αεkl, and the shrinkage coefficient matrix, ηεkl are periodic functions with

a period ε.

The equilibrium state of the material (including thermal and shrinkage effects) is

described by the following system of equations:

− ∂

∂xj

[
Cεijkl

(
ekl (u

ε)− ethkl − eshkl
)]

= f ε, ∀x ∈ Ω (2.2.1)

uεi = ūi, ∀x ∈ Γ1 (2.2.2)

σεijnj = ti, ∀x ∈ Γ2 (2.2.3)

where,

Cεijkl (x) =


Cfijkl, if the point x corresponds to the fiber

Cmijkl, if the point x corresponds to the matrix
(2.2.4)

ekl (u
ε) =

1

2

(
∂uεk
∂xl

+
∂uεl
∂xk

)
(2.2.5)

ethkl = αεkl∆T, ∆T = Tc − Tr (2.2.6)

where, Tc, Tr is the cure and the room temperature respectively

αεkl (x) =


αfkl, if the point x corresponds to the fiber

αmkl, if the point x corresponds to the matrix
(2.2.7)

eshkl = ηεkl
∆V

V
(2.2.8)

where, ∆V
V is the change in volume per unit volume due to chemical shrinkage

ηεkl (x) =


ηfkl, if the point x corresponds to the fiber

ηmkl , if the point x corresponds to the matrix
(2.2.9)
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Effects of two scales is separated out by defining two coordinates: a slow coordinate,

x and a fast coordinate, y as

x and y =
x

ε
(2.2.10)

All the field variables are assumed to be a function of the two scales. For any function

Φε (x) = Φ
(
x,y = x

ε

)
, we have (by chain rule), the following equation (2.2.11):

∂Φε

∂x
=
∂Φ

∂x
+

1

ε

∂Φ

∂y
(2.2.11)

By using the chain rule (2.2.11), the expression for strain (2.2.5) can be given by the

following.

ekl (u
ε) =

1

2

(
∂uεk
∂xl

+
∂uεl
∂xk

)
from (2.2.5) (2.2.12)

=
1

2

[(
∂uk
∂xl

+
1

ε

∂uk
∂yl

)
+

(
∂ul
∂xk

+
1

ε

∂ul
∂yk

)]
by using (2.2.11) (2.2.13)

= exkl(u (x,y)) +
1

ε
eykl(u (x,y)) (2.2.14)

where the operators exkl(u (x,y)) and eykl(u (x,y)) are defined as follows. For any function

uε (x) = u
(
x,y = x

ε

)

exkl(u
ε) =

1

2

(
∂uk
∂xl

+
∂ul
∂xk

)
(2.2.15)

eykl(u
ε) =

1

2

(
∂uk
∂yl

+
∂ul
∂yk

)
(2.2.16)

Now, by using (2.2.14) and (2.2.11) in equation (2.2.1) and collecting the different powers

of ε together, we obtain equation (2.2.17):

ε−2A0u
ε + ε−1A1u

ε +A2u
ε = f εi −

∂

∂xj
Cεijkl

(
αεkl∆T + ηεkl

∆V

V

)
− ε−1

[
∂

∂yj
Cεijkl

(
αεkl∆T + ηεkl

∆V

V

)]
(2.2.17)
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where, A0, A1, and A2 are operators which are defined as follows. For any function

Φε (x,y):

A0Φε = − ∂

∂yj

(
Cεijkle

y
kl (Φ

ε)
)

(2.2.18)

A1Φε = − ∂

∂xj

(
Cεijkle

y
kl (Φ

ε)
)
− ∂

∂yj

(
Cεijkle

x
kl (Φ

ε)
)

(2.2.19)

A2Φε = − ∂

∂xj

(
Cεijkle

x
kl (Φ

ε)
)

(2.2.20)

The asymptotic expansions of uεi and f
ε
i are defined as follows (equations (2.2.21) and (2.2.22)).

uεi (x) = ui (x,y) = u
(0)
i (x,y) + εu

(1)
i (x,y) + ε2u

(2)
i (x,y) + · · · (2.2.21)

f εi (x) = fi (x,y) = f
(0)
i (x,y) + εf

(1)
i (x,y) + ε2f

(2)
i (x,y) + · · · (2.2.22)

where u(n)
i and f (n)

i , n = 0, 1, 2, . . . are y-periodic.

By using equation (2.2.21) and the fact that different powers of ε are independent of

each other, in equation (2.2.17), the following equations are obtained.

A0u
(0) = 0 (2.2.23)

A0u
(1) +A1u

(0) = − ∂

∂yj
Cεijkl

(
αεkl∆T + ηεkl

∆V

V

)
(2.2.24)

A0u
(2) +A1u

(1) +A2u
(0) = f

(0)
i (x,y)− ∂

∂xj
Cεijkl

(
αεkl∆T + ηεkl

∆V

V

)
(2.2.25)

The following lemma is used in solving the equations (2.2.23) to (2.2.25), see [9] for details.

Lemma 1. Let Cijkl (y), Φ (y) and F (y) be y-periodic. Then a necessary and

sufficient condition for a y-periodic solution of the equation

A0Φ ≡ − ∂

∂yj

(
Cεijkle

y
kl (Φ)

)
= F (y) (2.2.26)
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to exist is the following.

〈F 〉 =
1

|Y |

∫
Y

F (y) dy = 0 (2.2.27)

If a y-periodic solution Φ exists, then it is unique up to a constant vector C. The general

y-periodic solution of equation (2.2.26) can be written as Φ (y) = Φ̄ (y)+C, where Φ̄ (y) is

a solution of (2.2.26) with zero mean over the period:
〈
Φ̄
〉

= 0, C is an arbitrary constant

vector.

Remark. The integral in the above equation represents the summation of piecewise inte-

grals in the fiber and the matrix domain.

Solution of equation (2.2.23):

By virtue of equations (2.2.26) and (2.2.27), the only periodic solution of (2.2.23) is

u(0) = constant where x is a parameter, i.e.

u(0) (x,y) = v(0) (x) (2.2.28)

Solution of equation (2.2.24):

Using (2.2.28), (2.2.24) reduces to

A0u
(1) =

∂

∂yj
Cijkl (y)

(
exkl (v0)− αεkl∆T − ηεkl

∆V

V

)
(2.2.29)

In (2.2.29) the parentheses collectively represents mechanical strains and individually they

correspond to the total, thermal and shrinkage strain. Further, ∆T , ∆V
V and exkl (v0) are

functions of slow variable x only. x is just a parameter and the equation may be regarded

as a problem depending on the variable y only. Therefore, the solution exists by virtue

of equations (2.2.26) and (2.2.27). In order to obtain the effective properties and the

micro-stresses the solution of equation (2.2.29) is necessary. The determination of effective

stiffness, strain concentration factors, effective coefficient of thermal expansion, effective
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coefficient of shrinkage, and the state of micro-stresses are described in the following sub-

sections.

2.2.1 Effective Stiffness

The effective stiffness and the strain concentration factors are obtained using the equations

(2.2.29) with ∆T = 0 and ∆V
V = 0. The general solution of the resulting equation may be

assumed in the following form (equation (2.2.30)):

u(1) (x,y) = χrsexrs (v0 (x)) +w1 (x) (2.2.30)

Note that the expression above means that the micro solution is written as a combination

of solutions corresponding to individual macro-strains exrs. Substituting u(1) in (2.2.29),

with ∆T = 0 and ∆V
V = 0, yields,

A0 {χrsexrs (v0 (x)) +w1 (x)} =

{
∂

∂yj
Cijkl (y)

}
exkl (v0) (2.2.31)

A0 {χrsexrs (v0 (x))} =

{
∂

∂yj
Cijkl (y)

}
exkl (v0) (2.2.32){

A0χ
rs − ∂

∂yj
Cijrs (y)

}
exrs (v0 (x)) = 0 (2.2.33)

By equation (2.2.33), it suffices to consider the following auxiliary problem.

A0χ
rs =

∂

∂yj

(
Cijrs (y)

)
,χrs is y-periodic (2.2.34)

The above problem is solved over unit-cell RVE by using finite element method.

Solution of equation (2.2.25):

When u(0) and u(1) are known, the equation (2.2.25) with ∆T = 0 and ∆V
V = 0, can

be written as:

A0u
(2) = f (0) −A1u

(1) −A2u
(0) (2.2.35)
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By virtue of the equations (2.2.26) and (2.2.27), y-periodic solution u(2) exists if and only

if 〈
f (0) −A1u

(1) −A2u
(0)
〉

= 0 (2.2.36)

Substituting for u(0) and u(1) from (2.2.28) and (2.2.30), the condition (2.2.36) yields

∫
Y

{
f (0) +

∂

∂xj

([
Cεijrs + Cεijkle

y
kl (χ

rs)
]
exrs (v0)

)
+

+
1

2

∂

∂yj

(
Cεijklχ

rs
k

) ∂

∂xl
(exrs (v0)) +

1

2

∂

∂yj

(
Cεijklχ

rs
l

) ∂

∂xk
(exrs (v0)) +

+exkl (w1)
∂

∂yj

(
Cεijkl

)}
dy = 0

(2.2.37)

The functions Cijkl and χ
rs are y-periodic and the functions exkl (w1), ∂

∂xl
(exrs (v0)) and

∂
∂xk

(exrs (v0)) are independent of y. Therefore, by Gauss divergence theorem, the third,

fourth and fifth terms of equation (2.2.37) vanish yielding the following.

∫
Y

f (0)dy +
∂

∂xj


∫
Y

[
Cεijrs + Cεijkle

y
kl (χ

rs)
]
dy

 exrs (v0)

 = 0 (2.2.38)

or

− ∂

∂xj

(
C̄ijrse

x
rs (v0)

)
=
〈
f (0)

〉
(2.2.39)

where

C̄ijrs =
〈
Cεijrs + Cεijkle

y
kl (χ

rs)
〉

(2.2.40)

The equation (2.2.39) is called the homogenized equation or macro level equilibrium equa-

tion and the equation (2.2.40) gives the homogenized coefficients or the effective elastic

constants.

Knowing the solution of the cell problem (u(1)) and the effective stiffness, the effective
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coefficient of thermal expansion, effective coefficient of shrinkage, and the state of micro-

stresses are obtained as detailed in the following sections.

2.2.2 Effective coefficient of thermal expansion

The following formulation completely follows the work presented in [4], it is presented here

for the sake of completeness. To find the effective coefficient of thermal expansion, consider

the equation (2.2.25) with ∆T 6= 0 and ∆V
V = 0.

When u(0) and u(1) are known, the equation (2.2.25) with ∆T 6= 0 and ∆V
V = 0, can

be written as

A0u
(2) = f

(0)
i −A1u

(1) −A2u
(0) − ∂

∂xj

(
Cεijklα

ε
kl∆T

)
(2.2.41)

By virtue of the equations (2.2.26) and (2.2.27), y-periodic solution u(2) exists if and only

if 〈
f

(0)
i −A1u

(1) −A2u
(0) − ∂

∂xj

(
Cεijklα

ε
kl∆T

)〉
= 0 (2.2.42)

Substituting for u(0) and u(1) from (2.2.28) and (2.2.30), the condition (2.2.42) yields

∫
Y

{
f (0) +

∂

∂xj

([
Cεijrs + Cεijkle

y
kl (χ

rs)
]
exrs (v0)

)
− ∂

∂xj

(
Cεijklα

ε
kl∆T

)
+

+
1

2

∂

∂yj

(
Cεijklχ

rs
k

) ∂

∂xl
(exrs (v0)) +

1

2

∂

∂yj

(
Cεijklχ

rs
l

) ∂

∂xk
(exrs (v0)) +

+exkl (w1)
∂

∂yj

(
Cεijkl

)}
dy = 0

(2.2.43)

The functions Cijkl and χ
rs are y-periodic and the functions exkl (w1), ∂

∂xl
(exrs (v0)) and

∂
∂xk

(exrs (v0)) are independent of y. Therefore, by Gauss divergence theorem, the fourth,

fifth and sixth terms of equation (2.2.43) vanish yielding the following.

∫
Y

f (0)dy +
∂

∂xj


∫
Y

[
Cεijrs + Cεijkle

y
kl (χ

rs)
]
dy

 exrs (v0)

− ∂

∂xj

∫
Y

Cεijklα
ε
kl∆Tdy = 0

(2.2.44)
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or

−C̄ijrs
∂

∂xj
(exrs (v0)) +

∂

∂xj
bij∆T =

〈
f (0)

〉
(2.2.45)

where

C̄ijrs =
〈
Cεijrs + Cεijkle

y
kl (χ

rs)
〉

(2.2.46)

bij =
〈
Cεijklα

ε
kl

〉
= Cfijklα

f
klvf + Cmijklα

m
klvm (2.2.47)

vf = volume fraction of the fiber

vm = volume fraction of the matrix

Consider the situation where there is only thermal load and the material has no

external constraints. This results in non-zero strains and zero stresses at the macro level.

But the micro stresses are non-zero due to the difference in the coefficient of thermal

expansions of the constituent materials. With no external load, the equation (2.2.45)

becomes,

− ∂

∂xj

(
C̄ijrse

x
rs (v0)

)
+

∂

∂xj
bij∆T = 0 (2.2.48)

or

∂

∂xj
C̄ijrs (exrs (v0)− ᾱrs∆T ) = 0 (2.2.49)

therefore, by equation (2.2.49)

exrs (v0) = ᾱrs∆T (2.2.50)

where

ᾱrs =
[
C̄ijrs

]−1
bij (2.2.51)
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The equation (2.2.49) is called the homogenized equation or macro level equilibrium equa-

tion with only thermal loading and equation (2.2.51) gives the effective thermal coefficient

of expansion. C̄ijrs is known from the solution of the cell problem.

By using similar arguments given in this section, the effective coefficient of shrinkage

is obtained in the following section.

2.2.3 Effective shrinkage coefficient

To obtain the effective shrinkage coefficient, consider the equation (2.2.25) with ∆T = 0

and ∆V
V 6= 0.

When u(0) and u(1) are known, the equation (2.2.25) with ∆T = 0 and ∆V
V 6= 0, can

be written as

A0u
(2) = f

(0)
i −A1u

(1) −A2u
(0) − ∂

∂xj

(
Cεijklη

ε
kl

∆V

V

)
(2.2.52)

By virtue of the equations (2.2.26) and (2.2.27), y-periodic solution u(2) exists if and only

if 〈
f

(0)
i −A1u

(1) −A2u
(0) − ∂

∂xj

(
Cεijklη

ε
kl

∆V

V

)〉
= 0 (2.2.53)

Substituting for u(0) and u(1) from (2.2.28) and (2.2.30), the condition (2.2.53) yields

∫
Y

{
f (0) +

∂

∂xj

([
Cεijrs + Cεijkle

y
kl (χ

rs)
]
exrs (v0)

)
− ∂

∂xj

(
Cεijklη

ε
kl

∆V

V

)
+

+
1

2

∂

∂yj

(
Cεijklχ

rs
k

) ∂

∂xl
(exrs (v0)) +

1

2

∂

∂yj

(
Cεijklχ

rs
l

) ∂

∂xk
(exrs (v0)) +

+exkl (w1)
∂

∂yj

(
Cεijkl

)}
dy = 0

(2.2.54)

The functions Cijkl and χ
rs are y-periodic and the functions exkl (w1), ∂

∂xl
(exrs (v0)) and

∂
∂xk

(exrs (v0)) are independent of y. Therefore, by Gauss divergence theorem, the fourth,
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fifth and sixth terms of equation (2.2.54) vanish yielding the following.

∫
Y

f (0)dy +
∂

∂xj


∫
Y

[
Cεijrs + Cεijkle

y
kl (χ

rs)
]
dy

 exrs (v0)

− ∂

∂xj

∫
Y

Cεijklη
ε
kl

∆V

V
dy = 0

(2.2.55)

or

− ∂

∂xj

(
C̄ijrse

x
rs (v0)

)
+

∂

∂xj
gij∆T =

〈
f (0)

〉
(2.2.56)

where

C̄ijrs =
〈
Cεijrs + Cεijkle

y
kl (χ

rs)
〉

(2.2.57)

gij =
〈
Cεijklη

ε
kl

〉
= Cfijklη

f
klvf + Cmijklη

m
klvm (2.2.58)

vf = volume fraction of the fiber

vm = volume fraction of the matrix

Let us consider the situation where there is only shrinkage load and the material has

no external constraints. This results in non-zero strains and zero stresses at the macro level.

But the micro stresses are non-zero due to the difference in the coefficient of shrinkage of

the constituent materials. With no external load, the equation (2.2.56) becomes,

− ∂

∂xj

(
C̄ijrse

x
rs (v0)

)
+

∂

∂xj
gij∆T = 0 (2.2.59)

or

∂

∂xj
C̄ijrs (exrs (v0)− η̄rs∆T ) = 0 (2.2.60)

therefore, by equation (2.2.60)

exrs (v0) = η̄rs∆T (2.2.61)



2.2 Formulation 29

where

η̄rs =
[
C̄ijrs

]−1
gij (2.2.62)

The equation (2.2.60) is called the homogenized equation or macro level equilibrium equa-

tion with only shrinkage loading and equation (2.2.62) gives the effective shrinkage coeffi-

cient. C̄ijrs is known from the solution of the cell problem.

Once the effective properties and the homogenized equation are obtained, the state

of stress and strain at the macro level can be computed. Relation between the macro and

the micro stress (and strain) is necessary to obtain the state of stress (and strain) at the

micro level. This relation can be given in terms of concentration factors. The process of

obtaining the strain concentration factors is described in the following section.

2.2.4 Strain concentration factors and state of stress (and strain) at

micro level

Starting from the expression for strain at the micro level, the relation between macro and

micro state of strain can be established. The expression for strain at the micro level, given

by equation (2.2.14), is repeated here for reference.

ekl(u
ε) = exkl(u (x,y)) +

1

ε
eykl(u (x,y)) (2.2.63)

Substituting the definitions (2.2.15), (2.2.16) and (2.2.21) in (2.2.63) and collecting

different powers of ε separately yields,

ekl(u
ε) =

1

ε
eykl(u

(0)) + exkl(u
(0)) + eykl(u

(1)) + ε
[
exkl(u

(1)) + eykl(u
(2))
]

(2.2.64)
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By using (2.2.28), the first term in equation (2.2.64) becomes zero.

eykl(u
(0)) = 0 (2.2.65)

Therefore, the lowest order approximation of strain at the micro level is given by,

ekl(u
ε) = exkl(u

(0)) + eykl(u
(1)) (2.2.66)

By using (2.2.30), the above equation yields,

ekl(u
ε) = exkl(u

(0)) + eykl(−χ
rs(y)exrs(u

(0))) (2.2.67)

⇒ ekl(u
ε) = Mklrse

x
rs(u

(0)) (2.2.68)

where

Mklrs =
[
δrkδsl − e

y
kl(χ

rs(y))
]

(2.2.69)

The relation between the macro strain and the micro strain through the strain concen-

tration factor matrix Mklrs is given by (2.2.68). The micro strains and stresses, due to

thermal, chemical shrinkage or mechanical loading can be obtained using this equation.

The formulation developed in this chapter was implemented in a code by [4], using finite

element method, to obtain the effective properties and the local fields for a damaged and

undamaged continuum.



Chapter 3

Models for Macro Influence of

Damage

3.1 Micromechanics on unit-cell RVE

The homogenization method is used to perform a micromechanical analysis on unit-cell

RVE. This analysis is aimed at understanding the influence of volume fraction and damage

on the effective elastic properties. The influences are studied by comparing the results

of the analysis against the results obtained for a reference configuration. In the present

study, the undamaged material having fiber volume fraction 0.608 is chosen as the reference

configuration.

The parametric studies conducted to study the influences are:

1. Effect of volume fraction on the elastic properties of the undamaged composites.

2. Effect of damage modes and variation of damage sizes on the effective properties of

the composites, at the reference volume fraction and also at other volume fractions.

Through this study a damage based model for property reduction is sought, the
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effective elastic properties are defined as a smooth funtion of volume fraction and damage

as:

E = E (vf , di) , (3.1.1)

i = 1,2,....total number of damage modes,

from which the change in effective elastic properties is obtained using a Taylor series

expansion about the reference configuration in terms of the change in volume fraction from

the reference volume fraction, ∆vf , and the increase in damage size from the undamaged

configuration, ∆di.

The Taylor series expansion of the equation (3.1.1) about the reference volume fraction is

given by,

E (0.608 + vf , 0.0 + di) ≈ E (0.608, 0.0) +
∂E

∂vf
∆vf +

3∑
i=1

{
∂E

∂di
∆di

}
+

1

2!

∂2E

∂v2
f

∆v2
f +

1

2!

3∑
i=1

{
∂2E

∂d2
i

∆d2
i

}
+

1

2!

3∑
i=1

{
2
∂2E

∂vf∂di
∆vf∆di

} (3.1.2)

this can be re-written in terms of ∆di and ∆vf as follows

∆E =
[
j1∆vf + j2∆v2

f

]
+

3∑
i=1

[
k1i∆di + k2i∆d2

i

]
+

3∑
i=1

[pi∆vf∆di] (3.1.3)

Then the damaged effective elastic properties are given in terms of undamaged elastic

properties, Eud, as

Ed = Eud + ∆E (3.1.4)

where, ∆E=E(0.608+∆vf , 0.0+∆di) - E(0.608, 0.0), j1, j2, k1i, k2i and pi are the coeffi-

cients of ∆vf , ∆v2
f , ∆di, ∆d2

i and ∆vf∆di respectively, in equation (3.1.4)

The values of j1, j2, k1i, k2i and pi are determined from the numerical experiments

as described below.
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Determination of j1 and j2:

Consider the condition when di = 0, i = 1,2,3,4. The expression in (3.1.3) reduces to:

∆E ≈ j1∆vf + j2∆v2
f (3.1.5)

The constants j1 and j2 are obtained using a quadratic least square fit.

Determination of k1i and k2i:

Consider the condition when vf = 0, i = 1,2,3,4. The expression in (3.1.3) reduces to:

∆E ≈ k1i∆di + k2i∆d2
i (3.1.6)

Hence, numerical computations over damaged RVE, at the reference volume fraction, are

required to obtain the coefficients, k1i and k2i. By considering one damage mode at a time,

the constants k1i and k2i, corresponding to mode ’i’, can be obtained from a quadratic fit

of the plot between the change in elastic constants and the change in damage size for the

damage mode ’i’.

Determination of pi:

Knowing the values of j1, j2, k1i, and k2i, the coupling coefficient pi for the damage type

’i’ can be obtained as follows. Equation (3.1.3) can be rewritten to get,

∆E−
[
j1∆vf + j2∆v2

f

]
+
[
k1i∆di + k2i∆d2

i

]
= pi∆vf∆di (3.1.7)

Now by considering one damage mode ’i’ at a time, the constant pi can be obtained from

a linear fit between the left hand side and the right hand side of the above equation over

all possible combinations of ∆vf and ∆di considered for the analysis. Provided all the

constants are determined, equation (3.1.3) gives the change in elastic constants for a given

change in volume fraction and a given change in the damage size of a given damage mode.

Once the change in elastic constants are obtained, the damaged elastic constants can be

obtained from equation (3.1.1).
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To verify the capability of the models, the damaged elastic properties are computed

using the detailed model for different damages and damage sizes, at reference and other vol-

ume fractions. The computed values are then compared with the values that are obtained

from homogenization. The plots showing comparison of elastic properties, computed using

the detailed and homogenization, with the results of the numerical experiments are given

in figures (3.2 to 3.2).

The two independent, orthogonal matrix cracks studied are shown in figure 3.1

Figure 3.1: a.) Matrix crack mc-ydr and b.) Matrix crack mc-zdr

3.2 Effects of transverse matrix cracks under study on the ef-

fective properties at reference volume fraction(vf=0.608)

To study the effect of matrix cracks (figure 3.1) on the effective properties, a series of

numerical experiments are conducted on the unit-cell RVE with different sizes, one at a
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time, at the reference volume fraction. As the study is conducted at the reference volume

fraction, the change in volume fraction is zero (4vf = 0). Now, equation 3.1.3 reduces to

∆E ≈ k1i∆di + k2i∆d2
i (3.2.1)

The values of the coefficients in the above equation can be obtained using various combina-

tions of damage sizes at reference volume fraction and the corresponding stiffness constants.

The materials considered for the analysis are glass/epoxy and carbon/epoxy composites.

The different types of damages considered are: a ) fiber breakage [4]; b ) fiber matrix

de-bond [4]; and c ) matrix cracks (figure 3.1).

The values for j1, j2, k1i and k2i for matrix cracks in y and z directions considered

in this study are listed in tables 3.1 to 3.3.

The effect of matrix cracks (figure 3.1) on effective properties, at reference volume

fraction, are consolidated in figures 3.2 to 3.2 for glass/epoxy and carbon/epoxy composites

respectively. From the plots shown it can be inferred that:

1. E22 is primarily affected and G12 is also affected by the matrix crack (mc-ydr) in

y-direction.

2. E33 is primarily affected and G13 is also affected by the matrix crack (mc-zdr) in

z-direction.

3. With change in volume fractions similar trends are observed for both the matrix

cracks.

4. With change in the material (glass/epoxy) similar observations are noted.
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Table 3.1: Least square quadratic fit data values (j1 and j2) corresponding to carbon/epoxy
and glass/epoxy composites.

Material k1 k2

carbon/epoxy E11 226.968 7.1801
E22 36.4889 40.9412
E33 36.4889 40.9412
G23 8.434 13.461
G13 16.1612 25.9022
G12 16.1612 25.9022
ν23 -0.2524 0.3102
ν13 -0.1042 -0.0056
ν12 -0.1042 -0.0056

glass/epoxy E11 82.7994 2.6694
E22 65.715 102.2174
E33 65.71 102.217
G23 11.9218 21.7945
G13 19.2934 33.2271
G12 19.2934 33.2271
ν23 -0.5686 -0.0993
ν13 -0.1399 -0.0196
ν12 -0.1399 -0.0196

3.3 Free energy density function

The free energy density function for a damaged composite in terms of the damaged elastic

properties on the lines of [4] can be written as follows:

ψd =
1

2

{
σ2

11

Ed11

+
σ2

22

Ed22

+
σ2

33

Ed33

−
(
νd21

Ed22

+
νd12

Ed11

)
σ11σ22

}
−1

2

{(
νd31

Ed33

+
νd13

Ed11

)
σ11σ33 −

(
νd32

Ed33

+
νd23

Ed22

)
σ22σ33

}
+

1

2

{
2σ2

12

Gd12

+
2σ2

13

Gd13

+
2σ2

23

Gd23

}
(3.3.1)

where, the superscript ‘d’ denotes the values that correspond to the damaged con-

figuration. The macrolevel effective properties behave according to the model given by the
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Table 3.2: Least square quadratic fit data values (k1, k2 and p) corresponding to matrix
crack (mc− ydr) for carbon/epoxy and glass/epoxy composites.

Material k1 k2 p

carbon/epoxy E11 -0.7424 0.6725 0.1076
E22 -19.8951 5.3988 -34.4426
E33 -1.1931 0.4593 -0.6132
G23 -1.1205 -1.7002 -5.9568
G13 -0.0043 -0.0161 -0.0377
G12 -6.8028 1.8324 -15.2187
ν23 -0.1703 -0.1266 0.0157
ν13 -0.0067 0.0038 -0.0044
ν12 0.0331 -0.011 0.0519

glass/epoxy E11 -0.285 0.2545 0.0047
E22 -31.7601 13.3375 -61.2823
E33 -2.2464 0.9361 -2.5397
G23 -1.6198 -1.7216 -8.2859
G13 -0.0054 -0.0187 -0.051
G12 -7.9776 2.595 -18.0078
ν23 -0.0462 -0.1613 0.2515
ν13 -0.0104 0.0062 -0.0075
ν12 0.048 -0.0178 0.0785

equations [4] which can be written as:

Edij = Edij (d1, d2, d3) ,when σ11, σ22 or σ33 > 0 (3.3.2)

Edij = Edij (0, d2, d3) ,when σ11 < 0, σ22 or σ33 > 0 (3.3.3)

Edij = Edij (d1, d2, 0) ,when σ11 > 0, σ22 or σ33 < 0 (3.3.4)

Edij = Edij (0, d2, 0) ,when σ11, σ22 and σ33 < 0 (3.3.5)

When the normal stress σ11 is compressive, there is complete load transfer across a

broken fiber and hence the loss of stiffness will not be seen at the macrolevel. Similarly,

when σ22 and σ33 are compressive, the loss of stiffness due to d3 will not be observed at

the macrolevel. The free energy density as reported in [4] decreases with the increase in
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Table 3.3: Least square quadratic fit data values (k1, k2 and p) corresponding to matrix
crack (mc− zdr) for carbon/epoxy and glass/epoxy composites.

Material k1 k2 p

carbon/epoxy E11 -0.7425 0.6725 0.1072
E22 -1.2133 0.4728 -0.7155
E33 -19.9202 5.4253 -34.581
G23 -1.1254 -1.6949 -5.9843
G13 -6.7897 1.8204 -15.2277
G12 -0.0003 -0.0183 -0.028
ν23 0.3085 0.0632 0.072
ν13 0.0331 -0.011 0.0528
ν12 -0.0066 0.0038 -0.0045

glass/epoxy E11 -0.2852 0.2546 0.0042
E22 -2.2886 0.9664 -2.7169
E33 -31.8011 13.3835 -61.4501
G23 -1.6259 -1.7146 -8.3153
G13 -7.9634 2.5818 -18.0171
G12 -0.0005 -0.0213 -0.0382
ν23 0.4463 0.0537 0.3324
ν13 0.0481 -0.0177 0.0796
ν12 -0.0103 0.0062 -0.0076

damage for all damage modes and in all cases of loading. That is, − dψ
d(di)

> 0 . This result

was used while deriving the evolution law for different damage modes.
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Figure 3.2: Elastic properties of carbon/epoxy composite with mc− ydr ; ∆vf = 0: Com-
parison of homogenization and detailed models
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Figure 3.3: Elastic properties of carbon/epoxy composite with mc − ydr ; ∆vf = −105:
Comparison of homogenization and detailed models
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Figure 3.4: Elastic properties of carbon/epoxy composite with mc− zdr ; ∆vf = 0: Com-
parison of homogenization and detailed models
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Figure 3.5: Elastic properties of carbon/epoxy composite with mc − zdr ; ∆vf = −105:
Comparison of homogenization and detailed models
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Figure 3.6: Elastic properties of glass/epoxy composite with mc − ydr ; ∆vf = 0: Com-
parison of homogenization and detailed models
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Figure 3.7: Elastic properties of glass/epoxy composite with mc − ydr ; ∆vf = −105:
Comparison of homogenization and detailed models
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Figure 3.8: Elastic properties of glass/epoxy composite with mc − zdr ; ∆vf = 0: Com-
parison of homogenization and detailed models
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Figure 3.9: Elastic properties of glass/epoxy composite with mc − zdr ; ∆vf = −105:
Comparison of homogenization and detailed models



Chapter 4

Model Identification and Predictions

4.1 Model Identification

The model parameters were identified [4] using the same material, carbon/epoxy (T300/914)

with vf = 0.6, used by Ladeveze et al. [17]. The yield strength for matrix
(
σcy
)
as used in

the present study is 58.7 MPa and the stress at the fiber failure is 1000 Mpa, the initia-

tion parameters were obtained from the same model. The initiation and growth of crack

(mc-zdr) due to σ33 is not considered here, as it is assumed that the transverse stress

components in the ply are negligible. The values of the initiation parameters are listed in

table 4.1. The evolution model for d1 is already known (see equation (1.2.4)).

Table 4.1: Initiation parameters of the model

σc,macro11 (GPa) σc,macro22 (GPa) σc,macro12 (GPa) Λ

2.0000 0.0346 0.0205 0.8000

The damage parameters in the evolution models for d2 and d3 were determined from

the mechanical response of the angle-ply laminates used in DML. The idea behind the

selection of sequence of laminate configurations in DML is that with one configuration,
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chosen appropriately such that only one of the damage mode is dominant, the evolution

model for the corresponding damage mode can be obtained directly from the mechanical

response. Knowing the evolution for one damage mode, the coupling parameter between

the two damage modes and the evolution of other mode can be obtained by choosing a

configuration where the two damage modes co-exists. In this study, the same configurations

used in DML are employed, but the parameters are determined from the point of view of

the model under study.

4.1.1 Determination of c1

The evolution parameter c1 is directly obtained from the ply failure model [4]. For the

sake of completeness the process of obtaining the same is detailed here.

The same laminate configurations in [17] are used to determine the required param-

eters in the proposed model. For a highly orthotropic material such as T300/914 car-

bon/epoxy composite with [±45]s laminate configuration, the relation between the lamina

stresses in the material coordinates to the applied axial stress in the laminate is given by

the following.

σ11 = 0.8753σ̄x; σ22 = 0.1247σ̄x; σ12 = −0.5σ̄x; (4.1.1)

As failure due to σ11 occurs at a much higher value of σ̄, it is obvious that the damage

mode in the material is highly influenced by σ12. So, the only dominant damage mode is

d2. Thus, from the shear response of the composite lamina, the parameter in the evolution

model for the damage mode d2 is obtained by measuring shear modulus at different stress

levels from the slope of the unloading/reloading curves corresponding to each stress level.

The change in modulus, as compared to the initial modulus, at different stress levels is

then calculated. The damage size of d2, that would result in the corresponding change in

modulus, is obtained by using the proposed equation for finding elastic properties, with

only d2 6= 0, at each stress level considered.

Knowing the values of d2, at different stress levels of σ12, the parameter c1 in the evolution
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model is obtained from the best least square fit of the plot between d2 and σ12−σc12. Here,

σc12 is the stress at which the shear damage initiates.

4.1.2 Determination of c2

The value of c2 is determined by adopting the procedure as detailed in the model [4]

under study. Laminate with [±67.5]s configuration is chosen for the determination of c2.

This laminate is found to have sufficiently low inter-laminar stresses, such that they do

not cause initiation of delamination [1]. The relation between the lamina stresses in the

material coordinates to the axial stress in the [±67.5]s laminate is given by the following:

σ11 = 0.1148σ̄x; σ22 = 0.8852σ̄x; σ12 = −0.3219σ̄x; (4.1.2)

Note that the state of stress is biaxial and therefore the two damage modes, d2 and d3

co-exist.

The experimental plot between σ22 and e22, is used to determine c2. From the curve,

the reduction in the modulus (E22) at different levels of stress (σ22) is obtained. The

reduction in the modulus, ∆E22, depends on both the damage modes d2 and d3.

∆E22 ≈
∂E22

∂d2

∣∣∣∣
vf=0.6

∆d2 +
∂E22

∂d3

∣∣∣∣
vf=0.6

∆d3 (4.1.3)

Using the evolution model for d2 and σ12 that exist corresponding to the given value of

σ22, the reduction in E22 only due to d2, is obtained for different levels of σ22. This

reduction, ∂E22
∂d2

∣∣∣
vf=0.6

∆d2, is deducted from the reduction, ∆E22, measured directly from

the experimental curve as follows.

∆E22|d3 ≈ ∆E22 −
∂E22

∂d2

∣∣∣∣
vf=0.6

∆d2 (4.1.4)

The resulting amount of reduction, ∆E22|d3 , is used for the calculation of the damage size
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d3 in a way similar to the determination of d2. That is, the size of damage d3, that would

result in the corresponding change in modulus (after deducting the reduction due to d2), is

obtained by using the proposed equation for finding elastic properties at each stress level

considered.

Knowing the values of d3, at different stress levels of σ22, the parameter c2 in the

evolution model is obtained from the least square fit for the plot between d3 and σ22−σc22.

σc22 is the stress at which the damage initiates. The values of evolution parameters are

listed in table 4.2.

Table 4.2: Evolution parameters of the model

c1 c2

11.0 19.56

4.2 Model Predictions

The model [4] under study is used to predict the responses of several laminates, made of

T300/914 carbon/ epoxy, such as: a) [±45]s, b) [±67.5]s, c) [0/90]s and d) [−12/78]2s.

The samples are loaded by either a monotonic or a cyclic stress profile, as given in figures

4.6, 4.12, 4.16 and 4.22. The experimental data in figures 4.2 to 4.24 are taken from [17].

1. [±45]s:

The prediction of tensile response of [±45]s laminate and the shear response of a

lamina are given in figures 4.2 and 4.4 respectively. The state of stress in the lamina given

by equation (4.1.1) shows that the response of the lamina is influenced by the shear stress.

Thus, the damage mode is likely to be the fiber-matrix de-bond. The growth of different

damage modes is given in figure 4.5b, which shows that the only damage mode which is

active is the fiber-matrix debond and the curves obtained are well in accord with the results

of matrix crack [4]. The responses given in figures 4.1b and 4.3b match closely with the
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results obtained by [4].

2. [±67.5]s:

The prediction of the shear and the transverse responses of a lamina, in [±67.5]s

laminate, are given in figures 4.8 and 4.10 respectively. Further, the state of stress in the

lamina given by equation (4.1.2) shows a biaxial state of stress. Thus, a coupled state of

damage (modes d2 and d3) is likely to be present. The growth of different damage modes

given in figure 4.12 shows the presence of two damage modes, the fiber-matrix de-bond and

the matrix cracks. The shear response matches well with the one obtained by the model

[4], while the transverse response is stiffer than the experiment. This is expected and is

due to the difference in the transverse properties used in the prediction and the experiment

(refer 4.1).

The damage (d3) due to the matrix crack (mc-ydr) has evolved to a lesser value as

compared to the matrix crack considered in [4], this is observed because for a particular

size of damage the area that can be damaged to the maximum extent is bigger in the

present case as compared to the one considered in [4]. Fiber/matrix debond (d2) has not

changed compared to [4]. Damage mode corresponding to fiber-breakage is not triggered

by this loading because of the high value of initiation stress, damage due to matrix crack

(mc-zdr) stays unaffected because of the absence of σ33 loading.

Table 4.3: Differences in the lamina properties used in the model from the experiment

Lamina Properties
Model Experiment

E11(GPa) 141.5966 170.0000
E22(GPa) 16.1131 10.8000
G12(GPa) 5.7759 5.8000
ν12(GPa) 0.2936 0.3400

3. [0/90]s:

The prediction of the tensile response of the [0/90]s laminate is given in figure 4.14.
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The results are as expected, i.e., the 90o lamina fails first followed by the failure of 90o

lamina. This can be seen from the growth of different damage modes given in figures 4.16

and 4.18, for 0o and 90o laminae respectively. The matrix cracks are first initiated in 90o

lamina. The evolution of d3 very quickly reaches the critical value of one in [4]. In the 0o

lamina, matrix cracks initiate before the fiber breaks, the model [4] predicts similar such

behaviour with the present transverse matrix cracks. Development of d2 is not noticed in

both laminae and the fiber breakage is noticed only in 0o lamina.

4. [−12/78]2s:

Prediction of the tensile response of the [−12/78]2s laminate is given in figure 4.20.

The state of stress in −12o and 78o laminae are given by (4.2.1) and (4.2.2) respectively,

as:

σ11 = 1.7187σ̄x; σ22 = 0.0545σ̄x; σ12 = 0.2034σ̄x; (4.2.1)

σ11 = 0.0319σ̄x; σ22 = 0.1948σ̄x; σ12 = −0.2034σ̄x; (4.2.2)

σ22 has lesser influence on damage in −12o lamina, compared to σ12, which can be seen

from the plots showing the growth of damage (refer figure 4.22), where only the damage

mode d2 is present. In the case of 78o lamina, two damage modes, d2 and d3 are present

(refer figure(4.24)). Further, the growth of damage mode d3 saturates, as the values of

transverse stress in the lamina saturates. The growth of damage mode d2 is same in both

the laminae and similar trend is observed as compared to [4]. The damage mode d3 shows

a similar movement as in [4] but, the saturation value drops below that of [4], this is as

expected because of the definition of damage variable defined in both cases.

5. [67.5/22.5]2s:

The prediction of the tensile response of the [67.5/22.5]2s is given in figure 4.26. The

state of stress in 67.5o and 22.5o laminae are given by (4.2.3) and (4.2.4), respectively, as:

σ11 = −0.5195σ̄x; σ22 = 0.4825σ̄x; σ12 = 0.0171σ̄x; (4.2.3)
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σ11 = 1.7427σ̄x; σ22 = 0.2943σ̄x; σ12 = −0.2061σ̄x; (4.2.4)

In both the laminae, σ22 has a high influence. Thus, due to the difference in the transverse

properties (refer table 4.3), the predicted response is stiffer than the experiment. The

damage mode in 67.5o lamina is d3, whereas, the damage mode in 22.5o lamina is d2. This

is because, in the 67.5o lamina, σ22 is dominant, while in the 22.5o lamina, even though

the influence of both σ22 and σ12 are comparable, the response is due to the fact that the

shear damage happens at a lower value of σ12 as compared to the transverse damage due

to σ22.

The tensile response (figure 4.26) of the modeled transverse matrix crack follows

similar trends with that obtained by [4]. The damage mode (d3) associated with the

transverse matrix crack in 67.5o lamina (figure 4.28) has grown five times lesser as compared

to [4], this behaviour is as expected because of the nature of damage variable defines in the

present case. The 22.5o lamina (figure 4.30) is governed by the damage mode d2, which is

observed in both the transverse matrix cracks and that of [4].
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(a) Matrix cracks [4]

(b) Matrix cracks (present model)

− ◦ − experimental (axial) − − ∗ − − model (axial) · − � − · experimental (transverse)
· · · M · · · model (transverse)

Figure 4.2: Prediction of tensile response of [±45]s T300/914 carbon/epoxy laminates
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(a) Matrix cracks [4]

(b) Matrix cracks (present model)

− ◦ − experimental −− ∗ −− model

Figure 4.4: Prediction of lamina shear response of [±45]s T300/914 carbon/epoxy lami-
nates
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(a) Damage parameters [4]

(b) Damage parameters (present model)

− Applied stress (σxx) − − ∗ − − fiber breakage (d1) · − � − · fiber/matrix debond (d2)
· · · M · · · matrix crack (d3) −♦− matrix crack (d4)

Figure 4.6: Growth of damage parameters in a lamina of [±45]s T300/914 carbon/epoxy
laminates
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(a) Matrix cracks [4]

(b) Matrix cracks (present model)

− ◦ − experimental −− ∗ −− model

Figure 4.8: Prediction of lamina tensile response of [±67.5]s T300/914 carbon/epoxy lam-
inates
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(a) Matrix cracks [4]

(b) Matrix cracks (present model)

− ◦ − experimental −− ∗ −− model

Figure 4.10: Prediction of lamina shear response of [±67.5]s T300/914 carbon/epoxy lam-
inates
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(a) Damage parameters [4]

(b) Damage parameters (present model)

− Applied stress (σxx) − − ∗ − − fiber breakage (d1) · − � − · fiber/matrix debond (d2)
· · · M · · · matrix crack (d3) −♦− matrix crack (d4)

Figure 4.12: Growth of damage parameters in a lamina of [±67.5]s T300/914 carbon/epoxy
laminates
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(a) Matrix cracks [4]

(b) Matrix cracks (present model)

− ◦ − experimental (axial) − − ∗ − − model (axial) · − � − · experimental (transverse)
· · · M · · · model (transverse)

Figure 4.14: Prediction of tensile response of [0/90]s T300/914 carbon/epoxy laminates
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(a) Matrix cracks [4]

(b) Matrix cracks (present model)

− Applied stress (σxx) − − ∗ − − fiber breakage (d1) · − � − · fiber/matrix debond (d2)
· · · M · · · matrix crack (d3) −♦− matrix crack (d4)

Figure 4.16: Growth of damage parameters in a 00 lamina of [0/90]s T300/914 car-
bon/epoxy laminates
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(a) Matrix cracks [4]

(b) Matrix cracks (present model)

− Applied stress (σxx) − − ∗ − − fiber breakage (d1) · − � − · fiber/matrix debond (d2)
· · · M · · · matrix crack (d3) −♦− matrix crack (d4)

Figure 4.18: Growth of damage parameters in a 900 lamina of [0/90]s T300/914 car-
bon/epoxy laminates



4.2 Model Predictions 63

(a) Matrix cracks [4]

(b) Matrix cracks (present model)

− ◦ − experimental (axial) − − ∗ − − model (axial) · − � − · experimental (transverse)
· · · M · · · model (transverse) −O− DML (axial) −− ◦ −− DML (transverse)

Figure 4.20: Prediction of tensile response of [−12/78]2s T300/914 carbon/epoxy laminates
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(a) Matrix cracks [4]

(b) Matrix cracks (present model)

− Applied stress (σxx) − − ∗ − − fiber breakage (d1) · − � − · fiber/matrix debond (d2)
· · · M · · · matrix crack (d3) −♦− matrix crack (d4)

Figure 4.22: Growth of damage parameters in a −120 lamina of [−12/78]2s T300/914
carbon/epoxy laminates
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(a) Matrix cracks [4]

(b) Matrix cracks (present model)

− Applied stress (σxx) − − ∗ − − fiber breakage (d1) · − � − · fiber/matrix debond (d2)
· · · M · · · matrix crack (d3) −♦− matrix crack (d4)

Figure 4.24: Growth of damage parameters in a 780 lamina of [−12/78]2s T300/914 car-
bon/epoxy laminates
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(a) Matrix cracks [4]

(b) Matrix cracks (present model)

− ◦ − experimental (axial) − − ∗ − − model (axial) · − � − · experimental (transverse)
· · · · ·· model (transverse) −O− DML (axial) −− ◦ −− DML (transverse)

Figure 4.26: Prediction of tensile response of [67.5/22.5]2s T300/914 ca/ep laminates
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(a) Matrix cracks [4]

(b) Matrix cracks (present model)

− Applied stress (σxx) − − ∗ − − fiber breakage (d1) · − � − · fiber/matrix debond (d2)
· · · M · · · matrix crack (d3) −♦− matrix crack (d4)

Figure 4.28: Growth of damage parameters in a 67.50 lamina of [67.5/22.5]2s T300/914
ca/ep laminates
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(a) Matrix cracks [4]

(b) Matrix cracks (present model)

− Applied stress (σxx) − − ∗ − − fiber breakage (d1) · − � − · fiber/matrix debond (d2)
· · · M · · · matrix crack (d3) −♦− matrix crack (d4)

Figure 4.30: Growth of damage parameters in a 22.50 lamina of [67.5/22.5]2s T300/914
ca/ep laminates



Chapter 5

Conclusions

5.1 Conclusions

This study is focused on two types of matrix cracks propagating in y and z directions

along the length of the RVE with varying damage sizes. Using the mathematical theory

of homogenization, a detailed micromechanical analysis at the level of the constituents

(fibers and matrix) is conducted for the matrix cracks. Several numerical experiments are

performed on unit-cell RVEs to understand the effect of different sizes of assumed matrix

cracks on the effective properties of the composites and to study the local state of stresses

and strains.

Different kinds of laminates were cyclically and monotonically loaded and studied for

the evolution of these matrix cracks in each ply. And there saturation levels were observed.

These were further compared with those observed by [4].

The main conclusions of this study are summarized as follows:

1. A better matrix crack model with the actual physics observed based on stress con-

centration zones was modeled.
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2. The damage model [4] under study was effective in capturing the response of wide

varieties of composite laminates with the present transverse matrix cracks included.

3. From the micromechanical analysis it is clearly seen that the unit-cell RVE analysis

is sufficient to model the normal matrix cracks considered.

4. The dependence of damage behaviour on volume fraction which was previously stud-

ied was repeated on transverse matrix cracks, which showed great dependence of

damage behaviour on volume fraction.

5.2 Future scope

Some of the possible extensions to this study can be:

1. A complete 3-dimensional analysis including the transverse stress (σ33) can be carried

out to get the nature of evolution of the z-direction cracks.

2. A detailed study incorporating the interaction of several damage modes coupled with

the transverse matrix cracks can be taken.

3. The present study can be extended to include the evolution of transverse matrix

cracks in compression loading.
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